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Some examples from stochastic networks

W.N. Kang and R. J. Williams (2012): Diffusion approximation for an input-queued
switch operating under a maximum weight matching policy, Stochastic Systems, 2,
277-321
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Semimartingale reflecting diffusions

D
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G(0)

Stochastic Differential Equation with Reflection (SDER)

X(t) = X0 +

∫ t

0
b(X(s))ds +

∫ t

0
σ(X(s))dW(s) +

∫ t

0
γ(s)dλ(s),

X(s) ∈ D, γ(s) ∈ G(X(s)), G(x) a cone, |γ(s)| = 1, dλ− a.e.,

λ nondecreasing, continuous, dλ
(
{s ≤ t : X(s) ∈ ∂D}

)
= λ(t),

X is a solution if there exist W, γ, λ s.t. SDER is satisfied

For non semimartingale reflecting diffusions: Ramanan (2006), Ramanan-Reiman
(2008), Kang-Ramanan (2010), Lakner-Reed-Zwart (2017), etc.

For normal reflection: Tanaka (1979), Saisho (1987), Bass-Hsu (1990), De
Blassie-Toby (1993), Z.-Q. Chen (1993), Bass-Burdzy (2006, 2008), etc.
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Semimartingale obliquely reflecting diffusions: state of art
Seminal works: Harrison and Reiman (1981), Varadhan and Williams (1984),
Lions and Sznitman (1984), Williams (1985), Reiman and Williams (1988),
Bernard and El Kharroubi (1991), Taylor and Williams (1993), etc.
In a smooth cone in Rd with radially constant direction of reflection,
Kwon and Williams (1991) characterize Reflecting Brownian Motion
(RBM) as a solution of a submartingale problem and give necessary and
sufficient conditions for existence and uniqueness of the solution that
spends zero time at the vertex.
C. and Kurtz (2022) gives a sufficient condition for the solution to be a
semimartingale.
In a convex polyhedron in Rd, with constant direction of reflection on
each face, Dai and Williams (1996) give sufficient conditions for
existence and uniqueness of semimartingale RBM. The conditions are
also necessary for a simple polyhedron.
In a general piecewise C1 domain in Rd, Dupuis and Ishii (1993) give
sufficient conditions for strong existence and pathwise uniqueness of the
solution to SDER.
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Examples where none of the above results applies

n1
g1

n2
g2

|angle(g1, n1)| = |angle(g2, n2)| =constant ≥ π
4

The two examples from stochastic networks
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RBM in a convex polyhedron

D :=

m⋂
i=1

Di, Di a halfspace, N(x) :=
{

n : (y− x) · n ≥ 0, ∀y ∈ D
}

gi(x) ≡ gi, G(x) closed, convex cone generated by {gi, x ∈ ∂Di} b, σ constant

Theorem (Dai-Williams 1996)
a) For every x ∈ ∂D, there exists e ∈ N(x) such that

e · g > 0, ∀g ∈ G(x)− {0}.

b) For every x ∈ ∂D, there exists v ∈ G(x) such that

v · n > 0, ∀n ∈ N(x)− {0}.

Then, for every initial condition X0 ∈ D, there exists a solution of SDER and
it is unique in distribution. The solution is a strong Markov process.

Remark
b) is a necessary condition for existence of RBM.
In dimension 2 and in a simple polyhedron, a) and b) are equivalent.
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Piecewise smooth domains in R2

D bounded, connected, open set in R2

Define
N(x) :=

{
n : lim inf

y∈D, y→x

(y− x)

|y− x|
· n ≥ 0

}
.

Assume D admits the following representation:

D =

m⋂
i=1

Di, ∂Di ∈ C1,

and, defining
I(x) := {i : x ∈ ∂Di}, x ∈ ∂D,

the set of ”corners” {x ∈ ∂D : |I(x)| > 1} is finite.

gi(x) direction of reflection at x ∈ ∂Di, inf
x∈∂Di

gi(x) · ni(x) > 0.

G(x) the closed, convex cone generated by {gi(x), i ∈ I(x)}
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Cone points and cusp points

D

gj

gi
ni

nj
x

N(x) D

ni = nj

gj

gi

x

N(x) does not contain any full straight line: cone case.

x

ni

nj

N(x)
gj

gi

N(x) contains a full straight line: cusp case.
In the cusp case we assume that the contact that ∂Di and ∂Dj have between
themselves is of order not higher than each of them has with their common tangent.
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Piecewise smooth domains in R2: existence and uniqueness

gi, b, σ Lischitz continuous, σ(x) nonsingular at every corner x ∈ ∂D

Theorem (C. - Kurtz 2023)
a) For every x ∈ ∂D, there exists e ∈ N(x) such that

e · g > 0, ∀g ∈ G(x)− {0}.

Then, for every initial condition X0 ∈ D, there exists a solution of SDER and
it is unique in distribution. The solution is a strong Markov process.

Remark
In the case of RBM in a convex polygon with constant directions of reflection,
our condition coincides with Dai and Williams’: in this sense it is optimal.
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Piecewise smooth domains in R2: examples
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Piecewise smooth domains in R2: uniqueness

In dimension 2, for any piecewise smooth domain D with a finite
number of corners there is an open covering {Uk} of D such that each Uk
contains at most one corner xk.

Let Dk be a domain such that Dk ∩ Uk = D ∩ Uk and such that ∂Dk is
smooth except at xk. By a localization result in C. - Kurtz (2023), if
SDER has at most one (in distribution) solution in each Dk then it has at
most one solution in D.

If xk is a cone point, uniqueness in Dk has been proved in C. - Kurtz
(2022). The result holds in Rd.

If xk is a cusp point, uniqueness in Dk has been proved in C. - Kurtz
(2018). The result can be extended to Rd for a class of cusps (work in
progress).

Costantini Reflecting diffusions in curved nonsmooth domains Roscoff 2023 12 / 1



Uniqueness for a domain with one singular point

it is enough to prove uniqueness among strong Markov solutions starting
at 0 (C. - Kurtz (2019))

it is enough to prove that any two strong Markov solutions starting at 0,
X and X̃, have the same hitting distributions:

τδ := inf{t ≥ 0 : |X(t)| = δ}, τ̃δ := inf{t ≥ 0 : |X̃(t)| = δ}

τδ, τ̃δ <∞ a.s. and P(X(τδ) ∈ C) = P(X̃(τ̃δ) ∈ C) ∀C, ∀δ ≤ δ0.
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Uniqueness for a domain with one singular point

Ek := {x ∈ D : |x| = ρkδ}, τk := inf{t ≥ 0 : X(t) ∈ Ek}
Intuition:

X, X̃ strong Markov solutions starting at 0; consider the Markov chains{
ξh
}

:=
{

X(τn−h)
}

0≤h≤n,
{
ξ̃h
}

:=
{

X̃(τ̃n−h)
}

0≤h≤n

killed if X, X̃ reach the origin before the next layer
the transition kernels are the same, the difference between the two killed
Markov chains is only in their initial distributions on En

if the family of the transition kernels is “ergodic”⇒ the distributions of
the two killed Markov chains after n steps, i.e. their distributions on E0,
as n→∞ should ”forget” the initial distributions, hence be the same
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A reverse ergodic theorem for inhomogeneous killed MCs

X, X̃ two strong Markov solutions starting at 0. One can prove

E
[
f (X(τδ))

]
=

∫
En

(
Qn · · ·Q1f

)
(x)µn(dx)∫

En

(
Qn · · ·Q11

)
(x)µn(dx)

, µn(C) := P(X(τn) ∈ C),

E
[
f (X̃(τ̃δ))

]
=

∫
En

(
Qn · · ·Q1f

)
(x)µ̃n(dx)∫

En

(
Qn · · ·Q11

)
(x)µ̃n(dx)

, µ̃n(C) := P(X̃(τ̃n) ∈ C),

where

Qk(x,C) := P
(
τ x

k−1 < ϑx, Xx(τ x
k−1) ∈ C

)
, x ∈ Ek, C ⊆ Ek−1, k ≥ 1,

and Xx is a solution starting at x (uniquely determined up to
ϑx := inf{t ≥ 0 : Xx(t) = 0}), τ x

k−1 := inf{t ≥ 0 : Xx(t) ∈ Ek−1}.

Goal:

lim
n→∞

∫
En

(
Qn · · ·Q1f

)
(x) µn(dx)∫

En

(
Qn · · ·Q11

)
(x) µn(dx)

is independent of {µn}
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A reverse ergodic theorem for inhomogeneous killed MCs

Theorem (C. - Kurtz 2022)
E0, . . .En, . . . a sequence of compact metric spaces, Qn a subprobability
transition kernel from En to En−1

fn,̃x(x, ·) the Radon-Nykodim derivative of Qn(x, ·) w.r.t.
(
Qn(x, ·) + Qn(x̃, ·)

)
εn(x, x̃) :=

∫ (
fn,̃x(x, y) ∧ fn,x(x̃, y)

)(
Qn(x, dy) + Qn(x̃, dy)

)
, x, x̃ ∈ En.

Assume Qn is not identically zero and there exist c0 > 0 and ε0 > 0 such that

(i) infn infx,̃x∈En εn(x, x̃) ≥ ε0,

(ii) infn infx,̃x∈En(Qn · · ·Q1)(x,E0)/(Qn · · ·Q1)(x̃,E0) ≥ c0.

Then supx∈En
Qn · · ·Q11(x) > 0 and, for every f ∈ C(E0), {µn}, µn ∈ P(En),

the limit

lim
n→∞

∫
Qn · · ·Q1f (x)µn(dx)∫
Qn · · ·Q11(x)µn(dx)

exists and is independent of {µn}.
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Lower bound on εn(x, x̃): cone case

Let xn ∈ En be s.t. ρ−nxn → x. Then

ρ−nXxn
(ρ2n·) L→ Xx

,

where X is the Reflecting Brownian Motion in the ”tangent cone”

K := {x ∈ R2 : x · n1(0) > 0, x · n2(0) > 0},

with directions of reflection g1(0), g2(0) and coefficients b = 0, σ = σ(0).
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Lower bound on εn(x, x̃): cusp case

Same argument as in the cone case, but different choice of {En}:

ψ2

ψ1

0
δδn−1δn

qn

E0

En−1

qnEn

q1 := ψ2(δ)− ψ1(δ), δ1 := δ − q1,

qn := ψ2(δn−1)− ψ1(δn−1), δn := δn−1 − qn (q−1
n δn →∞).
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Lower bound on εn(x, x̃): cusp case

Let xn ∈ En be s.t. q−1
n xn

2 → x2 (q−1
n xn

1 = q−1
n δn →∞). Then

q−1
n
(
Xxn

1 (q2
n·)− δn,Xxn

2 (q2
n·)
) L→ Xx

,

where X is the Reflecting Brownian Motion in the strip

{x ∈ R2 : L < x2 < L + 1}, L := lim
x1→0+

ψ1(x1)

ψ2(x1)− ψ1(x1)
,

with directions of reflection g1(0), g2(0) and coefficients b = 0, σ = σ(0).
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Domains with one singular point in Rd: cone case

D bounded, connected, open set, ∂D− {0} ∈ C1.

There is an open cone K,

K := {rz, z ∈ S, r > 0}, S a smooth domain in Sd−1,

such that, for some rD > 0, r ≤ rD,

dH(D∩∂Br(0),K∩∂Br(0)) ≤ cDr2, dH(∂D∩∂Br(0), ∂K∩∂Br(0)) ≤ cDr2,

and for |x| = r, z the closest point to x
r on ∂S,

|n(x)− nK(z)| ≤ cDr.

0 x1

r
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Existence and uniqueness for the cone case

g(x) the direction of reflection at x ∈ ∂D− {0}, inf
x∈∂D−{0}

g(x) · n(x) > 0.

There is a smooth, unit vector field g on ∂S such that, for x ∈ ∂D, |x| = r, z
the closest point to x

r on ∂S,
|g(x)− g(z)| ≤ cgr, r ≤ rD.

(in particular, for xn ∈ ∂D, |xn| → 0,
xn

|xn|
→ z, g(xn)→ g(z))

G(0) the closed, convex cone generated by {g(z)), z ∈ ∂S}, σ(0) nonsingular

Theorem (C. - Kurtz 2022)
a) There exists e ∈ N(0) such that

e · g > 0, ∀g ∈ G(0)− {0}.

b) G(0) ∩ K 6= ∅.
then, for every initial condition X0 ∈ D, there exists a solution of SDER and it
is unique in distribution. The solution is a strong Markov process.
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Domains with one singular point in Rd: cusp case

D bounded, connected open set, ∂D− {0} ∈ C1

There are a domain D0 ⊆ Rd−1 and a function ψ : [0,∞)→ [0,∞), such
that, for some cD > 0,

D∩{x1 ≤ cD} = {x = (x1, xd−1), xd−1 ∈ Rd−1 : 0 < x1 ≤ cD,
xd−1

ψ(x1)
∈ D0}

D0 bounded, 0 ∈ D0, ∂D0 smooth,

ψ ∈ C1[0,∞), ψ(0) = ψ′(0) = 0, ψ(t) > 0 for t > 0,

0 x1

ψ(x1)
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Existence and uniqueness for the cusp case

g(x) the direction of reflection at x ∈ ∂D− {0}, inf
x∈∂D−{0}

g(x) · n(x) > 0.

There is a smooth, unit vector field g on ∂D0 such that, for x ∈ ∂D,

|g(x)− g(
xd−1

ψ(x1)
)| ≤ cgx1, x1 ≤ cD,

(in particular, for xn ∈ ∂D, |xn| → 0,
(xn)d−1

ψ(xn
1)
→ z, g(xn)→ g(z))

G(0) the closed,convex cone generated by {g(z)), z ∈ ∂D0}, σ(0) nonsingular

Theorem (work in progress)
a) There exists e ∈ N(0) such that

e · g > 0, ∀g ∈ G(0)− {0}.

Then, for every initial condition X0 ∈ D, there exists a solution of SDER and
it is unique in distribution. The solution is a strong Markov process.
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Existence for piecewise smooth domains in Rd

D bounded, connected, open set in Rd

Assume D admits a representation D =
⋂m

i=1 Di, ∂Di ∈ C1. such that

N(x) = {
∑

i∈I(x)

ηini(x), ηi ≥ 0}, ∀x ∈ ∂D.

For y ∈ Dc let
I(y) := {i : y /∈ Di},

For every x ∈ ∂D there is δ(x) > 0 such that I(y) ⊆ I(x) for y ∈ Bδ(x)(x).

For x ∈ ∂D, define the following family of subsets of I(x)

I(x) :=
{

I ⊆ I(x) : I = I(y) for some y ∈ Dc ∩ Bδ(x)(x)
}
,

and the subcones

NI(x) := {
∑
i∈I

ηini(x), ηi ≥ 0}, GI(x) := {
∑
i∈I

ηigi(x), ηi ≥ 0}, I ∈ I(x).
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Existence for piecewise smooth domains in Rd

Theorem (C. - Kurtz 2019)
b, σ, gi continuous, infx∈∂Di gi(x) · ni(x) > 0

a) for every x ∈ ∂D, there exists e ∈ N(x) such that

e · g > 0, ∀g ∈ G(x)− {0}

b) for every x ∈ ∂D, for every I ∈ I(x), NI(x) does not contain any full
straight line and for every n ∈ NI(x)− {0} there is g ∈ GI(x) such that

n · g > 0

Then, for every initial condition X0 ∈ D, there exists a strong Markov solution
of SDER.
If uniqueness in distribution holds among strong Markov solutions of SDER
then it holds among all solutions.

Remark
In the case of a simple, convex polyhedron, our conditions are equivalent to Dai and
Williams’.
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Existence for piecewise smooth domains in Rd

Keypoints of proof

X is a solution of SDER if and only if X is a natural solution of the
corresponding constrained martingale problem (introduced by Kurtz
(1987) and (1989))

One can construct a natural solution of the constrained martingale
problem by a limiting procedure without proving oscillation estimates.

One can formulate constrained martingale problems for all sorts of boundary
behavior (Wentzell boundary conditions, jumps from the boundary, etc.)
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Constrained martingale problem

Af (x) := ∇f (x) · b(x) +
1
2

tr
(
σ(x)σT(x)D2f (x)

)
Ξ := {(x, u) ∈ ∂D× Rd : u ∈ G(x), |u| = 1}, Bf (x, u) := ∇f (x) · u

Constrained martingale problem (Kurtz 1987, 1989. C.- Kurtz 2019)
X is a solution of the constrained martingale problem for (A,D,B,Ξ) if there
exists a random measure Λ on [0,∞)× Ξ and a filtration {Ft} such that

f (X(t))− f (X(0))−
∫ t

0
Af (X(s))ds−

∫
[0,t]×Ξ

Bf (x, u)Λ(ds× dx× du)

is a {Ft}-local martingale. X is a natural solution if

X(t) = Y(λ−1
0 (t)), Λ([0, t]× C) =

∫
[0,λ−1

0 (t)]×S1(0)
1C(Y(s), u)Λ1(ds× du),

where (Y, λ0,Λ1) is a solution of the controlled martingale problem for
(A,D,B,Ξ) ( a slowed down martingale problem).
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Thank you for your attention!

C. Costantini, T.G. Kurtz, Localization for constrained martingale problems
and optimal conditions for uniqueness of reflecting diffusions in
2-dimensional domains, arXiv:2206.05621v3, 2023

C. Costantini, T.G. Kurtz, An inhomogeneous reverse ergodic theorem and
application to a new uniqueness result for reflecting diffusions,
arXiv:2106.07208v4, 2022

C. Costantini, T.G. Kurtz, Markov selection for constrained martingale
problems, Electron. J. Probab. 24, no. 135, 2019,
https://projecteuclid.org/euclid.ejp/1573700462

C. Costantini, T.G. Kurtz, Existence and uniqueness of reflecting diffusions in
cusps, Electron. J. Probab. 23, no. 84, 2018,
https://projecteuclid.org/euclid.ejp/1536717743

Costantini Reflecting diffusions in curved nonsmooth domains Roscoff 2023 28 / 1


