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Introduction to rank-based diffusions
On (
;F ;F;P) , let us consider an n -dimensional diffusion
X (t) := (X1(t); : : : ;Xn(t)) described by

dXi (t) =
nX

k=1

gk �1fXi (t)=Rk (t)gdt +
nX

k=1

�k �1fXi (t)=Rk (t)gdWi (t)

for t � 0 , 1 � i � n with X (0) = x 2 Rn ,
where g1; : : : ; gn and �1; : : : ; �n are some constants,
W (�) := (W1(�); : : : ;Wn(�)) is an n -dimensional Brownian
motion, 1� is the indicator function of sets and
Rk (t) is the k -th largest (reversed order statistics) among
(X1(t); : : : ;Xn(t)) , i.e., R1(t) � : : : � Rn(t) for every t � 0 .
Here, we resolve the ties of ranking in favor of the lowest index,
and we consider solution with the non-stickiness conditionsZ 1

0
1fRk (t)=Rk+1(t)gdt = 0 ; k = 1; 2; : : : ;n � 1 :
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Simulated ranked process Rk(�)
Figure: gk := 0:1 � k � g , k = 1; : : : ;n , g := n(n + 1)=20 ,
�k = 1 + 0:01 � k , n = 50 .
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With piece-wise constant functions

g(x ) :=
nX

k=1

gk � �n ;k (x ) ; σ(x ) :=
nX

k=1

�k � �n ;k (x ) ;

�n ;k (x ) := 1f (n�k)=n < x � (n�k+1)=n g , k = 1; : : : ;n , x 2 R
and the empirical measure process

ρn(t) :=
1
n

nX
i=1

δXi (t) ; t � 0 ;

the system can be rewritten as

dXi (t) = g(F (Xi (t);ρn(t)))dt + σ(F (Xi (t);ρn(t)))dWi (t)

for t � 0 , where F (x ;µ) := µ((�1; x )) , x 2 R represents
the cumulative distribution function of a probability measure
µ(�) , and δx (�) is the Dirac delta measure at x 2 R .
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Under appropriate conditions, as n !1 , the empirical
measure �n(�) converges weakly to a deterministic path �1(�) ,
the unique solution of a McKean-Vlasov equation, and its
cumulative distribution u(t ; x ) := F (x ;ρ1(t)) , t � 0 , x 2 R
satisfies the porous medium equation

@tu = @x (G(u)) + @2
xx (S(u)) ;

G(�) := �

Z �

0
g(y)dy ; S(�) :=

1
2

Z �

0
σ2(y)dy :

(Dembo, Shkolnikov, Varadhan & Zeitouni (’12))
� The convergence is exponentially fast and the fluctuations
around this limit are gaussian described by an SPDE

(Kolli & Shkolnikov (’18) ).
� Application to financial markets
Banner, Fernholz & Karatzas (’05) Ichiba et al. (’11)
Jourdain & Reygner (’15), ...
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Non-degenerate case

When �k > 0 , k = 1; : : : ;n ,
� Existence of weak solution (
;F ;P) , (X (�);W (�)) , by the
theory of the martingale problem of Stroock & Varadhan
with the Alexandroff-Krylov estimates,
� Uniqueness in distribution - by Bass & Pardoux (’87)
� Pathwise uniqueness

- holds up to the time � of triple collision

� := infft > 0 : Xi (t) = Xj (t) = Xk (t)

for some i 6= j ; j 6= k ; k 6= ig ;

Prokaj (’11), Ichiba, Karatzas & Shkolnikov (’13),
Fernholz, Ichiba, Karatzas & Prokaj (’13).

� Positive recurrence property
Pal & Pitman (’10), Dembo & Tsai (’17) , ...
� Pathwise differentiability Lipshutz & Ramanan (’19ab).
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Still in non-degenerate case.

If a concavity relation of diffusion coefficients

�2
k �

1
2
(�2

k�1 + �2
k+1) ; k = 2; : : : ;n � 1

holds and the initial value x is away from the triple points, i.e.,

x 62 fx 2 Rn : xi = xj = xk for some i 6= j ; j 6= k ; k 6= ig

then
P(� <1) = 0 ;

and hence, it is strongly solvable over the time interval [0;1) .
Ichiba, Karatzas & Shkolnikov (’13)

Ichiba & Sarantsev (’17)
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Degenerate cases:
In this talk, we shall consider degenerate cases by allowing
some of �k to be zero in

dXi (t) =
nX

k=1

gk � 1fXi (t)=Rk (t)gdt +
nX

k=1

�k � 1fXi (t)=Rk (t)gdBi (t)

for i = 1; : : : ;n , t � 0 .
� For example, n = 2 :

Fernholz, Ichiba, Karatzas & Prokaj (’13).
(cf. Ichiba, Karatzas & Prokaj (’13),

Ichiba, Karatzas, Prokaj & Yan (’18))
� When n = 3 , we consider two extreme cases
(i) �1 = �3 = 0 , �2 = 1 ; (ii) �1 = �3 = 1 , �2 = 0 .

Assume the initial value is fixed and away from the triple points

x 62 fx 2 Rn : xi = xj = xk for some i 6= j ; j 6= k ; k 6= ig :
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Proposition (n = 3 ).

In case (i) �1 = �3 = 0 , �2 = 1 with n = 3 , the system of
equations for i = 1; 2; 3

Xi (�) = xi +
3X

k=1

Z �

0
gk1fXi (t)=Rk (t)gdt +

Z �

0
1fXi (t)=R2(t)gdBi (t)

admits a pathwise unique, strong solution with the non-sticky
condition and there is no triple collision

P(� <1) = 0 :
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Simulation: case (i)
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Black = X1(�) , Red = X2(�) , Green = X3(�) .
Here we have taken �g1 = 1 = g3 .
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Case (ii)

� In case (ii) �1 = �3 = 1, �2 = 0 with n = 3 , for the
system of equations, i = 1; 2; 3

Xi (�) = xi +
3X

k=1

Z �

0
gk 1fXi (t)=Rk (t)g dt

+

Z �

0

�
1fXi (t)=R1(t)g + 1fXi (t)=R3(t)g

�
dBi (t) ;

there exists a weak solution, unique in the sense of distribution
and

L(�;R1 �R3) � 0 ;

11



Case (ii) �1 = �3 = 1, �2 = 0

L(�;R1 �R3) � 0 ;

where L(t ; �) is the semimartingale local time for a real-valued
semimartingale �(�) accumulated at the origin over the time
interval [0; t ] for t � 0 , i.e.,

L(�; �) := L�(�) := lim
"#0

1
2"

Z �

0
1f0��(s)<"gh�i(s) :

� This solution is path-wise unique and strong
until the first time � when the triple collision occurs.

� However, the solution fails to be strong after � .
In particular, if g1 � g3 , P(� <1) = 1 .
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Simulation: case (ii)
X1(�) (Black) X2(�) (Red) X3(�) (Green)
with g1 := �0:5 , g2 := 0 , g3 := 0:5 , �1 = �3 = 1 , �2 = 0 .
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Analysis of case (i)
�1 = �3 = 0 , �2 = 1 .

Suppose a solution exists. Then the ranked process satisfies

RX
1 (t) = x1 + g1 t +

1
2
�(1;2)(t) ;

RX
2 (t) = x2 + g2 t + W (t)�

1
2
�(1;2)(t) +

1
2
�(2;3)(t) ;

RX
3 (t) = x3 + g3 t �

1
2
�(2;3)(t) ;

thanks to Banner & Ghomrasni (’08), where

W (�) =
3X

i=1

Z �

0
1fXi (t)=RX

2 (t)g
dBi (t)

is standard Brownian motion by the P. Lévy theorem and we
denote by �(k ;`)(t) � L(t ;RX

k �RX
` ) the local time

accumulated at the origin by the continuous, nonnegative
semimartingale RX

k (�)�RX
` (�) over the time interval [0; t ].
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Gaps (G(�);H (�))

We set now

G(�) := RX
1 (�)�RX

2 (�) ; H (�) := RX
2 (�)�RX

3 (�)

for the sizes of the gaps between the leader and the middle
particle, and between the middle particle and the laggard,
respectively, and obtain the semimartingale representations

G(t) = x1 � x2 �
�
g2 � g1

�
t �W (t)�

1
2

LH (t) + LG(t) ;

H (t) = x2 � x3 �
�
g3 � g2

�
t + W (t)�

1
2

LG(t) + LH (t)

for t � 0 .
The gaps are the reflecting Brownian motion in the theory of
Harrison & Reiman (’81) but with degeneracy.
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Construction of gaps: case (i)
Informed with this analysis, we start with given real numbers
gi , i = 1; 2; 3 and x1 > x2 > x3 , and construct a filtered
probability space (
;F ;P); F =

�
F(t)

	
0�t<1 under which

W (�) is a standard Brownian motion.
Solving the Skorokhod reflection equation

A(t) := max
0�s�t

�
� (x1 � x2) +

�
g2 � g1

�
s + W (s) +

1
2
�(s)

�+
;

�(t) := max
0�s�t

�
� (x2 � x3) +

�
g3 � g2

�
s �W (s) +

1
2

A(s)
�+

we define the gaps by the Skorokhod map

G(�) := U (�)+max
0�s��

(�U (s))+ ; H (�) := V (�)+max
0�s��

(�V (s))+ ;

U (t) := x1 � x2 �
�
g2 � g1

�
t �W (t)�

1
2
�(t) ;

V (t) := x2 � x3 �
�
g3 � g2

�
t + W (t)�

1
2

A(t)

for t � 0 .
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Construction of ranks: case (i)
We introduce now

R1(t) := x1 + g1 t +
1
2

A(t)

R2(t) := x2 + g2 t + W (t)�
1
2

A(t) +
1
2
�(t)

R3(t) := x3 + g3 t �
1
2
�(t)

for 0 � t <1 and note the relations

R1(�)�R2(�) = G(�) � 0 ; R2(�)�R3(�) = H (�) � 0

By Payley-Wiener-Zygmund theorem for W (�)

P(R1(�)�R3(�) = G(�) + H (�) > 0) = 1 :

“Two ballistic motions cannot squeeze a diffusive
(Brownian) motion".
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Construction of individual motions: case (i)

We start at time �0 � 0 and
follow the paths of the top particle and of the pair consisting of
the bottom two particles separately, until the top particle
collides with the leader of the bottom pair (at time %0).

Then we follow the paths of the bottom particle and of the pair
consisting of the top two particles separately, until the bottom
particle collides with the laggard of the top pair (at time �1).
We repeat the procedure until S := limk!1 �k = limk!1 �k

0 = �0 � %0 � �1 � %1 � � � � � �k � %k � � � � ;

� During each interval of the form [�k ; %k ) or [%k ; �k+1) , a
pathwise unique, strong solution of the corresponding
two-particle system Fernholz et al.(’13).

(cf. Karatzas, Pal & Shkolnikov (’12))
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Positive recurrence: case (i)
Proposition If the stability condition

2(g3 � g2) + (g1 � g2)
� > 0 ; 2(g2 � g1) + (g2 � g3)

� > 0

holds, then the gap process (G(�);H (�)) is positive recurrent,
has a unique invariant probability measure π with
π((0;1)2) = 1 , and converges to this measure in distribution
as t !1 with the strong laws of large numbers

lim
T!1

1
T

Z T

0
f (G(t);H (t))dt =

Z
[0;1)2

f (x ; y)π(dx ;dy) a :s : ;

Particularly,

lim
t!1

LG(t)
t

=
2
3
(g2+g3�2g1) ; lim

t!1

LH (t)
t

=
2
3
(2g3�g1�g2) :

Proof is an extension of Hobson & Rogers (’93).
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In the symmetric case g2 � g1 = g3 � g2 =: �=2 > 0 , we have

E�[G(t)] = E�[H (t)] =
1
3�

;

and the Laplace transform

b�(a1; a2) := E�[exp(�a1G(t)�a2H (t))] ; (a1; a2) 2 [0;1)2nf0g ;

of the joint stationary distribution � satisfies

b�(a1; a2) =
�[(2a1 � a2)b�(a2; a2) + (2a2 � a1)b�(a1; a1)]

(a1 � a2)2 + �(a1 + a2)
:

The joint distribution of the gaps is determined by the
distribution of the sum under the stationary measure.
� This form also rules out exponential marginal distributions
for gaps (cf. Harrison & Williams (’87)).
� Ongoing joint work with Raschel & Franceschi.
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Now let us look at Case (ii)

�1 = �3 = 1, �2 = 0 with n = 3 , i = 1; 2; 3

Xi (�) = xi +
3X

k=1

Z �

0
gk 1fXi (t)=Rk (t)g dt

+

Z �

0

�
1fXi (t)=R1(t)g + 1fXi (t)=R3(t)g

�
dBi (t)

with the no-stickiness condition and no local time from triple
collisionZ 1

0
1fRk (t)=R`(t)gdt = 0 ; L(�;R1 �R3) � 0 ;
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Simulation: case (ii)
X1(�) (Black) X2(�) (Red) X3(�) (Green)
with g1 := �0:5 , g2 := 0 , g3 := 0:5 , �1 = �3 = 1 , �2 = 0 .
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Analysis: case (ii)
Assume that a solution exists. Then

RX
1 (t) = x1 + g1 t + W1(t) +

1
2
�(1;2)(t) ;

RX
2 (t) = x2 + g2 t �

1
2
�(1;2)(t) +

1
2
�(2;3)(t) ;

RX
3 (t) = x3 + g3 t + W3(t)�

1
2
�(2;3)(t) ; t � 0 ;

where (W1(�);W3(�)) is a standard, two-dimensional Brownian
motion:

Wk (�) =
3X

i=1

Z �

0
1fXi (t)=RX

k (t)g dBi (t) ; k = 1; 3 :

Then, the gaps (G(�) =: ϱ� cos(ϑ�) ;H (�) =: ϱ� sin(ϑ�)) form a
reflecting Brownian motion on a nonnegative quadrant studied
by Varadhan & Williams (’85), Williams (’87).
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Let us consider the special case g1 � g2 = g2 � g3 .
In this case, (G(�) =: ϱ� cos(ϑ�) ;H (�) =: ϱ� sin(ϑ�)) is a planar
Brownian motion reflected on the faces of the nonnegative
quadrant at angles �1 = �2 = arctan(1=2) relative to the
interior normals there, thus with

'(�; �) := �� cos(�� � �1) ; 0 � � <1 ; 0 � � � �=2 ;

� :=
2
�

arctan(4=3) 2
� 1

2
;

2
3

�
;

the process '(ϱ�;ϑ�) is a nonnegative, continuous local
submartingale; The process (G(�);H (�)) , started in the
interior, hits eventually the corner a.s. , that is,

P(� <1) = 1 :

The two diffusive motions can squeeze the ballistic motion
in the middle.
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In the Doob-Meyer decomposition of '(ϱ�;ϑ�) , the continuous,
adapted, non-decreasing process is a constant multiple of the
positive, continuous, additive functional ��(�) :=

�(2� �)

2
lim
"#0

"1�(2=�)
Z �

0
(cos(�ϑt � �1))

(2=�)�2 � 1[0;")('(ϱt ;ϑt ))dt ;

where the limit is in the sense of convergence in probability.
� If G(0) = H (0) = 0 , the right continuous inverse of
t 7! ��(t) is a stable subordinator of index �=2 .
� The set of triple collision

ft : G(t) = H (t) = 0g

has Haussdorff dimension �=2 .
(cf. Williams (’87), Rogers (’89) for details.)

� In particular, Lϱ(�) � 0 and LG+H (�) � 0 .
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Construction of ranks and gaps: case (ii)
We introduce the ranks: for t � 0

R1(t) := x1 + g1 t + W1(t) +
1
2

A(t) ;

R2(t) := x2 + g2 t �
1
2

A(t) +
1
2
�(t) ;

R3(t) := x3 + g3 t + W3(t)�
1
2
�(t) ;

A(t) = max
0�s�t

�
� (x1 � x2) +

�
g2 � g1

�
s�W1(s) +

1
2
�(s)

�+
;

�(t) = max
0�s�t

�
� (x2 � x3) +

�
g3 � g2

�
s+W3(s) +

1
2

A(s)
�+

;

U (t) := x1 � x2 �
�
g2 � g1

�
t + W1(t)�

1
2
�(t) ;

V (t) := x2 � x3 �
�
g3 � g2

�
t �W3(t)�

1
2

A(t) ;

and (G(�);H (�)) as the Skorokhod map of (U (�);V (�)) .
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Construction of individual motions: Case (ii)
We mimic a construction of Walsh Brownian motion:

Prokaj (’09), Ichiba, Karatzas, Prokaj & Yan (’18).
We define the first passage time and the zero sets :

�0 := infft > 0 : G(t) ^H (t) = 0g;

ft � 0 : G(t) = 0g ; ft � 0 : H (t) = 0g ;

and the corresponding countable excursion intervals
fCG

` ; ` 2 Ng , fCH
m ;m 2 Ng , i.e.,

R+nft : G(t) = 0g =
[
`2N

CG
` ; R+nft : H (t) = 0g =

[
`2N

CH
` :

Then, by enlarging the probability space, for each excursion
after �0 , we assign random permutation matrices to
interchange the indexes with probability 1=2 and not to do so
with probability 1=2 ;

Then apply Theorem VI.1.10 of Revuz & Yor (’99).
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Uniqueness
� Up to the first time � of triple collision, the solution is
pathwise unique and strong, and hence, the distribution is
uniquely determined. After � , because of invariant under
permutations, each Xi (t) is Rk (t) , k = 1; 2; 3 equally likely
with probability 1=3 . By the Markov property of Rk (�) , the
weak solution is unique in distribution.

� The permutation at the excursion starting from the corner
does not contribute to the distribution but perturb the
pathwise behavior. Thus, the pathwise uniqueness fails, but
then by the dual of Yamada-Watanabe theorem (cf. Cherny
(’01), Engelbert (’91)), it is not strong after the first triple
collision time � .

� Open problem: determine stochastic flows as in Tsirel’son
(’97), Warren (’02), Le Jan& Raimond (’04), Watanabe
(’00), Akahori, Izumi & Watanabe (’09).
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Summary:
Degenerate, rank-based particle systems

� N = 2 Fernholz, Ichiba, Karatzas & Prokaj (’13).

� Two extreme cases: N = 3
▶ (i) �1 = 0 = �3 , �2 = 1 ;
▶ (ii) �2 = 0 , �1 = 1 = �3 .

� Skew-elastic collision

� N � 4 :
▶ multiple collisions

(cf. Ichiba & Sarantsev (’17) for non-degenerate case)
▶ Extreme cases:

Case (i) �1 = 0 , �2 = � � � = �n�1 = 1 , �n = 0 ,
Case (ii) �2i = 0 , �2i�1 = 1 , i = 1; : : : ;
Case (iii) �2i = 1 , �2i�1 = 0 , i = 1; : : : ;

Part of research is supported by NSF Grants DMS-2008427
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A system with skew-elastic collisions

Let us modify the first system. For i = 1; 2; 3 ,

Xi (�) = xi +
3X

k=1

Z �

0
gk1fXi (t)=Rk (t)gdt +

Z �

0
1fXi (t)=R2(t)gdBi (t)

+

Z �

0
1fXi (t)=R2(t)gdL

R2�R3(t) + +

Z �

0
1fXi (t)=R3(t)gdL

R2�R3(t)

with the non-stickiness condition and no local time from the
triple collisionZ 1

0
1fRk (t)=R`(t)gdt = 0 ; k 6= ` ; LR1�R3(�) � 0 :
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From ranks (R1(�);R2(�);R3(�)) to (X1(�);X2(�);X3(�))

From the analysis of ranks,

R1(t) = x1 + g1 t +
1
2
�(1;2)(t)

R2(t) = x2 + g2 t + W (t)�
1
2
�(1;2)(t) +

3
2
�(2;3)(t)

R3(t) = x3 + g3 t +
1
2
�(2;3)(t)

the solution can be constructed similarly as before.

� The gap process (G(�);H (�)) is a two-dimensional,
degenerate, reflecting Brownian motion with oblique reflection.
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Proposition. The degenerate system with skew-elastic collisions:

Xi (�) = xi +
3X

k=1

Z �

0
gk1fXi (t)=Rk (t)gdt +

Z �

0
1fXi (t)=R2(t)gdBi (t)

+

Z �

0
1fXi (t)=R2(t)gdL

R2�R3(t) +
Z �

0
1fXi (t)=R3(t)gdL

R2�R3(t)

has a pathwise-unique, strong solution with non-stickiness
condition until the time of triple collisions.
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Black = R1(�) , Red = R2(�) , Green = R3(�) . Here we have
taken g1 = �1, g2 = �2 and g3 = �1 .
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Invariant distribution of gaps
Under the conditions

3 g3 > 2 g1 + g2 ; 2 g3 > g1 + g2 ;

the gap process (G(�);H (�)) is positive recurrent and has a
unique invariant probability measure

π(dx1;dx2) = 4�1�2 exp(�2�1x1 � 2�2x2) ; (x1; x2) 2 (0;1)2 ;

where �1 := 2(3 g3 � 2 g1 � g2) , �2 := 2(2 g3 � g1 � g2) .
Indeed, by an application of Itô’s formula,

d
�
G2(t) + 3G(t)H (t) + 3H 2(t)

�
=
h
1�

1
2
�
�1G(t)+3�2H (t)

�i
dt+

�
3H (t)+G(t)

�
dW (t) ; t � 0 :

suggests the function V (g ; h) = expf
p

g2 + 3gh + 3h2 g is a
Lyapounov function for the semimaritngale reflecting
Brownian motion.

cf. Dai & Kurtz (’03) O’Connell & Ortmann (’12)
34


