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Reflected Brownian motion in a quadrant
Some assumptions:
● semi-martingale
● negative drift
● existence (and uniqueness) of stationary distribution

[Varadhan & Williams 85, Hobson & Rogers 93]
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A hierarchy of functions

● Rational

● Algebraic

● D-finite

● D-algebraic

● D-transcendantal

Multi-variate functions: one DE per variable
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Main results (0)

Two models in one

quadrant

Normalize the cone
Normalize the 

covariance matrix

A classical parameter:

The process is a semi-martingale iff α<1   [Williams]. 
A refinement (involves θ): 

(exchanged by symmetry). Note that 

β-wedge
4 

angles

Id
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Thm. Under this assumption,

where P(y) is a explicit polynomial.
Equivalently, the corresponding density p1(v) is a sum of terms

● In particular, if all poles of P(y) are distinct then the corresponding 
density is a sum of exponentials   [Dieker-Moriarty 09].

● A multiple pole occurs iff                                  for some j ∈ [2,-2α].

Example. If                                        and                             then

with density proportional to            (Erlang distribution).

Rational cases: 𝛿 + 𝜀 = π+mβ  (α ∈ ℤ)     [simple] 
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Thm. Under this assumption,

where all constants are explicit and

● The function φ1(y) is D-finite, and algebraic iff                .

● The linear differential equation satisfied by Tc(z) yields an explicit 

4th order recurrence relation for the moments.

A D-finite case:  𝛿 + 𝜀 + β = 2π                   [simple]
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Thm. This corresponds to 

Under this assumption,

with explicit constants. The corresponding density p1(v) is

● Explicit 2D density (in the β-wedge): in polar coordinates (r,a),

cf. [Harrison 78] in a special case (                                                  ).

A “double” algebraic case:  α1 = α2 = 0            [double]



III. The proof:
algebraic skeleton

(all analysis hidden)
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The functional equation for φ(x,y):
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A functional equation for φ1(y)
The functional equation for φ(x,y):

where the kernel γ(x,y) is quadratic:

and γ1(x,y), γ2(x,y) are linear polynomials in x,y.

● Assume γ(x,y) = γ(x,y’)=0. 

● This reads

for algebraic functions A(y) and B(y).
y'

y

x

By elimination of φ2(x),

γ(x,y)=0
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A rational parametrisation of the curve γ(x,y)=0
The curve

can be parametrized by

with explicit constants.

● If x=X(s), the two roots of γ(x,y) are y=Y(s) and y’=Y(1/s)= Y(sq), 
with q= e2iβ.  

y'

y
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● The functional equation

becomes

where Ã(s) is rational and

A rational parametrisation of the curve γ(x,y)=0
The curve

can be parametrized by

with explicit constants.

● If x=X(s), the two roots of γ(x,y) are y=Y(s) and y’=Y(1/s)= Y(sq), 
with q= e2iβ.  

y'

y

x
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Observation: If there exists a rational function R(s) such that

then Equation (1) gives 

With s=ei𝜔, the function                               has period 2 .β  ⇒ explicit trigonometric solutions.

The new functional equation, with                               and q= e2iβ:

The rational function Ã(s):

This holds iff

Condition 𝒞 ⇒ explicit solution (and D-algebraicity)
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The new functional equation, with                               and q= e2iβ:

for a rational function Ã(s).

D-algebraicity ⇒ Condition 𝒞          [Galois theory]

The Galois theory of q-difference equations gives a necessary 
condition on the function Ã(s) for            (and          ) to be D-
algebraic. 

With our function Ã(s)… this boils down to Condition 𝒞.
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Thanks for your 
attention


