On the stationary distribution of RBM in a wedge (arXiv 2021)

with Andrew Elvey Price, Sandro Franceschi, Charlotte Hardouin, and Kilian Raschel

Mireille Bousquet-Mélou CNRS, LaBRI, Université de Bordeaux, France

Enumerative combinatorics

How many trajectories of length n end at (i,j)?

Enumerative combinatorics

How many trajectories of length n end at (i,j)?

I. Main results

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$$
$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$R = (R^1, R^2) = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

Some assumptions:

 $r_{11} > 0, r_{22} > 0, det R > 0$

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$$
$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$R = (R^1, R^2) = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

Some assumptions:

• semi-martingale $r_{11} > 0$, $r_{22} > 0$, $\det R > 0$

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$$
$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$R = (R^1, R^2) = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

Some assumptions:

• semi-martingale

$$r_{11} > 0, r_{22} > 0, det R > 0$$

• negative drift $\mu_1 < 0, \quad \mu_2 < 0$

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$$
$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$R = (R^1, R^2) = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$$

Some assumptions:

- semi-martingale $r_{11} > 0$, $r_{22} > 0$, $\det R > 0$
- negative drift $\mu_1 < 0, \quad \mu_2 < 0$
- existence (and uniqueness) of stationary distribution

 $r_{22}\mu_1 - r_{12}\mu_2 < 0, \quad r_{11}\mu_2 - r_{21}\mu_1 < 0$

[Varadhan & Williams 85, Hobson & Rogers 93]

•The stationary distribution has density po(u,v), with Laplace transform:

$$\varphi(\mathbf{x},\mathbf{y}) = \iint_{\mathbb{R}^2_+} e^{\mathbf{x}\mathbf{u}+\mathbf{y}\mathbf{v}} p_0(\mathbf{u},\mathbf{v}) d\mathbf{u} d\mathbf{v}.$$

•The stationary distribution has density po(u,v), with Laplace transform:

$$\varphi(\mathbf{x},\mathbf{y}) = \iint_{\mathbb{R}^2_+} e^{\mathbf{x}\mathbf{u}+\mathbf{y}\mathbf{v}} p_0(\mathbf{u},\mathbf{v}) \mathrm{d}\mathbf{u}\mathrm{d}\mathbf{v}.$$

• Functional equation for $\varphi(x,y)$ ("basic adjoint relationship"):

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

for polynomials γ , γ_1 , γ_2 :

•The stationary distribution has density po(u,v), with Laplace transform:

$$\varphi(\mathbf{x},\mathbf{y}) = \iint_{\mathbb{R}^2_+} e^{\mathbf{x}\mathbf{u}+\mathbf{y}\mathbf{v}} p_0(\mathbf{u},\mathbf{v}) \mathrm{d}\mathbf{u}\mathrm{d}\mathbf{v}.$$

• Functional equation for $\varphi(x,y)$ ("basic adjoint relationship"):

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

for polynomials γ , γ_1 , γ_2 :

$$\begin{split} \gamma(x,y) &= \frac{1}{2}(\sigma_{11}x^2 + 2\sigma_{12}xy + \sigma_{22}y^2) + \mu_1 x + \mu_2 y, \\ \gamma_1(x,y) &= r_{11}x + r_{21}y, \\ \gamma_2(x,y) &= r_{12}x + r_{22}y. \end{split} \label{eq:gamma}$$

•The stationary distribution has density po(u,v), with Laplace transform:

$$\varphi(\mathbf{x},\mathbf{y}) = \iint_{\mathbb{R}^2_+} e^{\mathbf{x}\mathbf{u}+\mathbf{y}\mathbf{v}} p_0(\mathbf{u},\mathbf{v}) \mathrm{dudv}.$$

• Functional equation for $\varphi(x,y)$ ("basic adjoint relationship"):

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

for polynomials γ , γ_1 , γ_2 :

$$\begin{split} \gamma(x,y) &= \frac{1}{2}(\sigma_{11}x^2 + 2\sigma_{12}xy + \sigma_{22}y^2) + \mu_1 x + \mu_2 y, \\ \gamma_1(x,y) &= r_{11}x + r_{21}y, \\ \gamma_2(x,y) &= r_{12}x + r_{22}y. \end{split} \label{eq:gamma}$$

• The functions $\phi_1(y)$ and $\phi_2(x)$ are 1D Laplace transforms, and

•The stationary distribution has density po(u,v), with Laplace transform:

$$\varphi(\mathbf{x},\mathbf{y}) = \iint_{\mathbb{R}^2_+} e^{\mathbf{x}\mathbf{u}+\mathbf{y}\mathbf{v}} p_0(\mathbf{u},\mathbf{v}) \mathrm{d}\mathbf{u}\mathrm{d}\mathbf{v}.$$

• Functional equation for $\varphi(x,y)$ ("basic adjoint relationship"):

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

for polynomials γ , γ_1 , γ_2 :

$$\begin{split} \gamma(x,y) &= \frac{1}{2}(\sigma_{11}x^2 + 2\sigma_{12}xy + \sigma_{22}y^2) + \mu_1 x + \mu_2 y, \\ \gamma_1(x,y) &= r_{11}x + r_{21}y, \\ \gamma_2(x,y) &= r_{12}x + r_{22}y. \end{split} \label{eq:gamma}$$

• The functions $\phi_1(y)$ and $\phi_2(x)$ are 1D Laplace transforms, and

$$r_{21}\varphi_1(y) = -\left(\mu_2 + \sigma_{22}y/2\right)\varphi(0,y) - r_{22}\frac{\mu_2r_{11} - \mu_1r_{21}}{r_{12}r_{21} - r_{11}r_{22}}$$

(same for $\varphi_2(x)$).

A hierarchy of functions

Rational

$$\psi(x) = \frac{1-x}{1-x-x^2}$$

• Algebraic

$$1 - \psi(x) + x\psi(x)^2 = 0$$

• D-finite

 $x(1 - 16x)\psi''(x) + (1 - 32x)\psi'(x) - 4\psi(x) = 0$

• D-algebraic

 $(2x + 5\psi(x) - 3x\psi'(x))\psi''(x) = 48x$

A hierarchy of functions

Rational

$$\psi(\mathbf{x}) = \frac{1-\mathbf{x}}{1-\mathbf{x}-\mathbf{x}^2}$$

• Algebraic

$$1 - \psi(x) + x\psi(x)^2 = 0$$

• D-finite

 $x(1 - 16x)\psi''(x) + (1 - 32x)\psi'(x) - 4\psi(x) = 0$

• D-algebraic

 $(2x+5\psi(x)-3x\psi'(x))\psi''(x)=48x$

D-transcendantal

A hierarchy of functions

Rational

$$\psi(\mathbf{x}) = \frac{1-\mathbf{x}}{1-\mathbf{x}-\mathbf{x}^2}$$

• Algebraic

$$1 - \psi(x) + x\psi(x)^2 = 0$$

• D-finite

 $x(1 - 16x)\psi''(x) + (1 - 32x)\psi'(x) - 4\psi(x) = 0$

• D-algebraic

 $(2x+5\psi(x)-3x\psi'(x))\psi''(x)=48x$

D-transcendantal

Multi-variate functions: one DE per variable

Main results (0)

Main results (0)

A classical parameter:

$$\alpha = \frac{\delta + \varepsilon - \pi}{\beta}.$$

The process is a semi-martingale iff $\alpha < 1$ [Williams].

Main results (0)

A classical parameter:

$$\alpha = \frac{\delta + \varepsilon - \pi}{\beta}.$$

The process is a semi-martingale iff $\alpha < 1$ [Williams].

A refinement (involves θ):

$$lpha_1 = rac{2arepsilon + heta - eta - \pi}{eta} \quad ext{and} \quad lpha_2 = rac{2\delta - heta - \pi}{eta},$$
 (exchanged by symmetry). Note that $lpha_1 + lpha_2 = 2lpha - 1$.

Two models in one

Thm. Necessary and sufficient conditions for the Laplace transform $\varphi(x,y)$ to be rational/algebraic/D-finite/D-algebraic.

Thm. Necessary and sufficient conditions for the Laplace transform $\varphi(x,y)$ to be rational/algebraic/D-finite/D-algebraic.

	D-algebraic	D-finite	Algebraic	Rational
$\beta/\pi \notin \mathbb{Q}$	Condition ${\mathcal C}$	Condition C_1	$lpha\in\mathbb{Z}$, or	$lpha\in\mathbb{Z}$
			$\{\alpha_1, \alpha_2\} \subset \mathbb{Z}$	
$eta/\pi\in\mathbb{Q}$	always	Condition \mathcal{C}		$lpha\in\mathbb{Z}$

Thm. Necessary and sufficient conditions for the Laplace transform $\varphi(x,y)$ to be rational/algebraic/D-finite/D-algebraic.

	D-algebraic	D-finite	Algebraic	Rational
$\beta/\pi \notin \mathbb{Q}$	Condition $\mathcal C$	Condition \mathcal{C}_1	$lpha\in\mathbb{Z}$, or	$lpha\in\mathbb{Z}$
			$\{\alpha_1, \alpha_2\} \subset \mathbb{Z}$	
$eta/\pi\in\mathbb{Q}$	always	Condition \mathcal{C}		$lpha\in\mathbb{Z}$

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta} \mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta} \mathbb{Z} \\ (\mathcal{C}_1) \quad \alpha \in -\mathbb{N}_0 + \frac{\pi}{\beta} \mathbb{Z}, \quad \text{or} \\ \{\alpha_1, \alpha_2\} \subset \mathbb{Z} \cup \left(-\mathbb{N} + \frac{\pi}{\beta} \mathbb{Z}\right) \\ \beta \neq \delta \\ \alpha = \frac{\delta + \varepsilon - \pi}{\beta}, \quad \alpha_1 = \frac{2\varepsilon + \theta - \beta - \pi}{\beta} \quad \text{and} \quad \alpha_2 = \frac{2\delta - \theta - \pi}{\beta}$$

Thm. Necessary and sufficient conditions for the Laplace transform $\varphi(x,y)$ to be rational/algebraic/D-finite/D-algebraic.

	D-algebraic	D-finite	Algebraic	Rational
$\beta/\pi \notin \mathbb{Q}$	Condition ${\mathcal C}$	Condition \mathcal{C}_1	$lpha\in\mathbb{Z}$, or	$lpha\in\mathbb{Z}$
			$\{\alpha_1, \alpha_2\} \subset \mathbb{Z}$	
$eta/\pi\in\mathbb{Q}$	always	Condition \mathcal{C}		$lpha\in\mathbb{Z}$

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z} \\ (\mathcal{C}_1) \quad \alpha \in -\mathbb{N}_0 + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \\ \{\alpha_1, \alpha_2\} \subset \mathbb{Z} \cup \left(-\mathbb{N} + \frac{\pi}{\beta}\mathbb{Z}\right) \\ \text{Linear relations between angles} \\ \alpha = \frac{\delta + \varepsilon - \pi}{\beta}, \quad \alpha_1 = \frac{2\varepsilon + \theta - \beta - \pi}{\beta} \quad \text{and} \quad \alpha_2 = \frac{2\delta - \theta - \pi}{\beta}$$

ß

Thm. Necessary and sufficient conditions for the Laplace transform $\varphi(x,y)$ to be rational/algebraic/D-finite/D-algebraic.

	D-algebraic	D-finite	Algebraic	Rational
$\beta/\pi \notin \mathbb{Q}$	Condition ${\mathcal C}$	Condition \mathcal{C}_1	$lpha\in\mathbb{Z}$, or	$lpha\in\mathbb{Z}$
			$\{\alpha_1, \alpha_2\} \subset \mathbb{Z}$	
$\beta/\pi \in \mathbb{Q}$	always	Condition \mathcal{C}		$lpha\in\mathbb{Z}$

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

$$\delta + \varepsilon = \mathfrak{m}\beta + \mathfrak{n}\pi, \quad \text{or}$$

$$2\varepsilon + \theta = \mathfrak{m}\beta + \mathfrak{n}\pi, \quad 2\delta - \theta = \mathfrak{m}'\beta + \mathfrak{n}'\pi$$
Linear relations between angles
$$\alpha = \frac{\delta + \varepsilon - \pi}{\beta}, \quad \alpha_1 = \frac{2\varepsilon + \theta - \beta - \pi}{\beta} \quad \text{and} \quad \alpha_2 = \frac{2\delta - \theta - \pi}{\beta}$$

В

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

(*C*)
$$\alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$
, or $\{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

More precisely, $\varphi_1(y)$ (or its square...) is a rational function in

y and $T_{\pi/\beta}(ay+b)$,

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

More precisely, $\varphi_1(y)$ (or its square...) is a rational function in

y and
$$T_{\pi/\beta}(ay+b)$$
,

where a and b are explicit and $T_c(z)$ is a (D-finite) generalization of the Chebychev polynomial:

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right).$$

Recall:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

More precisely, $\varphi_1(y)$ (or its square...) is a rational function in

y and
$$T_{\pi/\beta}(ay+b)$$
,

trigonometry where a and b are explicit and $T_c(z)$ is a (D-finite) generalization the Chebychev polynomial:

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right).$$

Recall:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$
Main results (2): all "simple" cases explicit

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

More precisely, $\varphi_1(y)$ (or its square...) is a rational function in

y and $T_{\pi/\beta}(ay+b)$,

trigonometry where a and b are explicit and $T_c(z)$ is a (D-finite) generalization the Chebychev polynomial:

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right).$$

• A similar statement holds for $\phi_2(x)$.

Recall:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x)$

Main results (2): all "simple" cases explicit

Thm. As soon as Condition C holds, $\varphi(x,y)$ has an elementary expression in terms of (possibly irrational) powers.

$$(\mathcal{C}) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$$

More precisely, $\varphi_1(y)$ (or its square...) is a rational function in

y and $T_{\pi/\beta}(ay+b)$,

trigonometry where a and b are explicit and $T_c(z)$ is a (D-finite) generalization the Chebychev polynomial:

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right).$$

• A similar statement holds for $\phi_2(x)$.

Corollary: $\varphi_1(y)$, $\varphi_2(x)$ and $\varphi(x,y)$ are D-algebraic [closure properties].

II. Examples -Connections with previous work

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \frac{1}{\mathbf{P}(\mathbf{y})},$$

where P(y) is a explicit polynomial.

Equivalently, the corresponding density $p_{\rm l}(v)$ is a sum of terms

 $\kappa v^i e^{-\alpha v}$.

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \frac{1}{\mathsf{P}(\mathbf{y})},$$

where P(y) is a explicit polynomial.

Equivalently, the corresponding density $p_i(v)$ is a sum of terms $\kappa v^i e^{-\alpha v}$.

 In particular, if all poles of P(y) are distinct then the corresponding density is a sum of exponentials [Dieker-Moriarty 09].

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \frac{1}{\mathsf{P}(\mathbf{y})},$$

where P(y) is a explicit polynomial.

Equivalently, the corresponding density $p_i(v)$ is a sum of terms $\kappa v^i e^{-\alpha v}$.

- In particular, if all poles of P(y) are distinct then the corresponding density is a sum of exponentials [Dieker-Moriarty 09].
- A multiple pole occurs iff $\theta = 2\delta + j\beta \mod \pi$ for some $j \in [2, -2\alpha]$.

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \frac{1}{\mathsf{P}(\mathbf{y})},$$

where P(y) is a explicit polynomial.

Equivalently, the corresponding density $p_i(v)$ is a sum of terms $\kappa v^i e^{-\alpha v}$.

- In particular, if all poles of P(y) are distinct then the corresponding density is a sum of exponentials [Dieker-Moriarty 09].
- A multiple pole occurs iff $\theta = 2\delta + j\beta \mod \pi$ for some $j \in [2, -2\alpha]$.

Example. If $\delta + \varepsilon + \beta = \pi (\alpha = -1)$ and $\theta - 2\delta = 2\beta + \pi$, then

$$\varphi_1(\mathbf{y}) = \frac{\kappa}{(\mathbf{a} - \mathbf{y})^2},$$

with density proportional to ve^{-av} (Erlang distribution).

A D-finite case: $\delta + \varepsilon + \beta = 2\pi$

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \kappa \frac{\mathsf{T}_{\pi/\beta}(a\mathbf{y} + \mathbf{b}) - \mathsf{A}}{(\mathsf{B} - \mathbf{y})(\mathsf{C} - \mathbf{y})},$$

where all constants are explicit and

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right)$$

[simple]

A D-finite case: $\delta + \varepsilon + \beta = 2\pi$

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \kappa \frac{\mathsf{T}_{\pi/\beta}(a\mathbf{y} + \mathbf{b}) - \mathsf{A}}{(\mathsf{B} - \mathbf{y})(\mathsf{C} - \mathbf{y})},$$

where all constants are explicit and

$$T_{c}(z) = \frac{1}{2} \left(\left(z + \sqrt{z^{2} - 1} \right)^{c} + \left(z - \sqrt{z^{2} - 1} \right)^{c} \right)$$

[simple]

• The function $\varphi_{l}(y)$ is **D-finite**, and **algebraic** iff $\pi/\beta \in \mathbb{Q}$.

A D-finite case: $\delta + \varepsilon + \beta = 2\pi$

Thm. Under this assumption,

$$\varphi_1(\mathbf{y}) = \kappa \frac{\mathsf{T}_{\pi/\beta}(a\mathbf{y} + \mathbf{b}) - \mathsf{A}}{(\mathsf{B} - \mathbf{y})(\mathsf{C} - \mathbf{y})},$$

where all constants are explicit and

$$\mathsf{T}_{c}(z) = \frac{1}{2} \Big(\big(z + \sqrt{z^{2} - 1} \big)^{c} + \big(z - \sqrt{z^{2} - 1} \big)^{c} \Big).$$

[simple]

- The function $\varphi_{l}(y)$ is **D-finite**, and **algebraic** iff $\pi/\beta \in \mathbb{Q}$.
- The linear differential equation satisfied by $T_c(z)$ yields an explicit 4th order **recurrence relation** for the moments.

A "double" algebraic case: $\alpha_1 = \alpha_2 = 0$

Thm. This corresponds to

$$\theta = 2\delta - \pi, \qquad \beta - \theta = 2\varepsilon - \pi.$$

[double]

Under this assumption,

$$\varphi_1(\mathbf{y}) = \frac{\kappa}{\sqrt{\mathbf{A} - \mathbf{y}}},$$

with explicit constants. The corresponding density $p_i(v)$ is

$$\frac{\kappa}{\sqrt{\pi}} \cdot \frac{e^{-\nu/r}}{\sqrt{\nu}}$$

 $-\nu/A$

A "double" algebraic case: $\alpha_1 = \alpha_2 = 0$

Thm. This corresponds to $\theta = 2\delta - \pi, \qquad \beta - \theta = 2\varepsilon - \pi.$ Under this assumption, $\varphi_1(y) = \frac{\kappa}{\sqrt{A - y}},$ with explicit constants. The corresponding density $p_i(v)$ is $\frac{\kappa}{\sqrt{\pi}} \cdot \frac{e^{-\nu/A}}{\sqrt{\nu}}.$

[double]

• Explicit 2D density (in the β -wedge): in polar coordinates (r,a),

$$q_0(r\cos a, r\sin a) = \kappa \, \frac{\cos(\frac{\theta-a}{2})}{\sqrt{r}} \exp\left(-c \, r\cos^2\left(\frac{\theta-a}{2}\right)\right).$$

cf. [Harrison 78] in a special case ($\beta = \delta = \pi/2$, $\epsilon = 3\pi/4$, $\mu_2 = 0$).

III. The proof: algebraic skeleton

(all analysis hidden)

The functional equation for $\varphi(x,y)$:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x),$

The functional equation for $\varphi(x,y)$:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x),$

where the kernel $\gamma(x,y)$ is quadratic:

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y}$$

and $\gamma_1(x,y)$, $\gamma_2(x,y)$ are linear polynomials in x,y.

The functional equation for $\varphi(x,y)$:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x),$

where the kernel $\gamma(x,y)$ is quadratic:

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y}$$

and $\gamma_1(x,y)$, $\gamma_2(x,y)$ are linear polynomials in x,y.

• Assume $\gamma(x,y) = \gamma(x,y')=0$.

The functional equation for $\varphi(x,y)$:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x),$

where the kernel $\gamma(x,y)$ is quadratic:

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y}$$

and $\gamma_1(x,y)$, $\gamma_2(x,y)$ are linear polynomials in x,y.

• Assume $\gamma(x,y) = \gamma(x,y')=0$. By elimination of $\varphi_2(x)$,

The functional equation for $\varphi(x,y)$:

 $-\gamma(x,y)\phi(x,y) = \gamma_1(x,y)\phi_1(y) + \gamma_2(x,y)\phi_2(x),$

where the kernel $\gamma(x,y)$ is quadratic:

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y}$$

and $\gamma_1(x,y)$, $\gamma_2(x,y)$ are linear polynomials in x,y.

• Assume $\gamma(x,y) = \gamma(x,y')=0$. By elimination of $\varphi_2(x)$,

$$\frac{\gamma_1(\mathbf{x},\mathbf{y})}{\gamma_2(\mathbf{x},\mathbf{y})}\varphi_1(\mathbf{y}) = \frac{\gamma_1(\mathbf{x},\mathbf{y'})}{\gamma_2(\mathbf{x},\mathbf{y'})}\varphi_1(\mathbf{y'}).$$

• This reads

 $\varphi_1(B(\mathbf{y})) = A(\mathbf{y})\varphi_1(\mathbf{y}),$

for algebraic functions A(y) and B(y).

The curve

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y} = 0$$

can be parametrized by

$$X(s) = a_1 + b_1 \left(s + \frac{1}{s} \right), \quad Y(s) = a_2 + b_2 \left(\frac{s}{e^{i\beta}} + \frac{e^{i\beta}}{s} \right),$$

with explicit constants.

The curve

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y} = 0$$

can be parametrized by

$$X(s) = a_1 + b_1 \left(s + \frac{1}{s} \right), \quad Y(s) = a_2 + b_2 \left(\frac{s}{e^{i\beta}} + \frac{e^{i\beta}}{s} \right),$$

with explicit constants.

The curve

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y} = 0$$

can be parametrized by

$$X(s) = a_1 + b_1 \left(s + \frac{1}{s}\right), \quad Y(s) = a_2 + b_2 \left(\frac{s}{e^{i\beta}} + \frac{e^{i\beta}}{s}\right),$$
 with explicit constants.

• If x=X(s), the two roots of $\gamma(x,y)$ are y=Y(s) and y'=Y(1/s)= Y(sq), with q= $e^{2i\beta}$.

The curve

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{2}(\sigma_{11}\mathbf{x}^2 + 2\sigma_{12}\mathbf{x}\mathbf{y} + \sigma_{22}\mathbf{y}^2) + \mu_1\mathbf{x} + \mu_2\mathbf{y} = 0$$

can be parametrized by

$$X(s) = a_1 + b_1 \left(s + \frac{1}{s} \right), \quad Y(s) = a_2 + b_2 \left(\frac{s}{e^{i\beta}} + \frac{e^{i\beta}}{s} \right),$$

with explicit constants.

- If x=X(s), the two roots of $\gamma(x,y)$ are y=Y(s) and y'=Y(1/s)= Y(sq), with q= $e^{2i\beta}$.
- The functional equation

$$\varphi_1(B(\mathbf{y})) = A(\mathbf{y})\varphi_1(\mathbf{y}),$$

becomes

$$\widetilde{\phi}_1(sq) = \widetilde{A}(s)\widetilde{\phi}_1(s),$$

where $\widetilde{A}(s)$ is rational and $\widetilde{\phi}_1(s) := \phi_1(Y(s))$.

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function Ã(s):

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function $\tilde{A}(s)$:

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\widetilde{A}(s) = rac{\mathsf{R}(s)}{\mathsf{R}(sq)},$$

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function Ã(s):

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\widetilde{A}(s) = rac{\mathsf{R}(s)}{\mathsf{R}(sq)},$$

then Equation (1) gives

 $(R\widetilde{\varphi}_1)(sq) = (R\widetilde{\varphi}_1)(s).$

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function $\tilde{A}(s)$:

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\widetilde{A}(s) = \frac{R(s)}{R(sq)},$$

then Equation (1) gives

$$(\mathbf{R}\widetilde{\varphi}_{1})(\mathbf{s}\mathbf{q}) = (\mathbf{R}\widetilde{\varphi}_{1})(\mathbf{s}).$$

With s= $e^{i\omega}$, the function $\omega \mapsto (R\widetilde{\varphi}_1)(e^{i\omega})$ has period 2 β . \Rightarrow explicit trigonometric solution

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function $\tilde{A}(s)$:

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function $\tilde{A}(s)$:

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\widetilde{A}(s) = \frac{R(s)}{R(sq)},$$

then Equation (1) gives

$$(\mathbf{R}\widetilde{\varphi}_{1})(\mathbf{s}\mathbf{q}) = (\mathbf{R}\widetilde{\varphi}_{1})(\mathbf{s}).$$

With s= $e^{i\omega}$, the function $\omega \mapsto (R\widetilde{\varphi}_1)(e^{i\omega})$ has period 2 β . \Rightarrow explicit trigonometric solution

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function Ã(s):

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\left(\widetilde{A}(s)\right)^{\mathfrak{m}} = \frac{\mathrm{R}(s)}{\mathrm{R}(sq)},$$

then Equation (1) gives

$$(R\widetilde{\varphi}_1^{\mathbf{m}})(sq) = (R\widetilde{\varphi}_1^{\mathbf{m}})(s).$$

With s= $e^{i\omega}$, the function $\omega \mapsto (R\widetilde{\varphi}_1^m)(e^{i\omega})$ has period 2β . \Rightarrow explicit trigonometric solutions.

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

$$\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s).$$
(1)

The rational function Ã(s):

$$\widetilde{A}(s) = rac{(s-s_1)(s_2s-1)}{(s-s_2)(s_1s-1)}, \quad ext{with } s_1 = -e^{i\beta(1-\alpha_1)}, \ s_2 = -e^{i\beta\alpha_2}.$$

Observation: If there exists a rational function R(s) such that

$$\left(\widetilde{A}(s)\right)^{m} = \frac{R(s)}{R(sq)},$$

This holds iff

$$(\mathcal{C}) \quad lpha \in \mathbb{Z} + rac{\pi}{eta}\mathbb{Z}, \quad ext{or} \quad \{lpha_1, lpha_2\} \subset \mathbb{Z} + rac{\pi}{eta}\mathbb{Z}$$

 \Rightarrow explicit trigonometric solutions.

[Galois theory]

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

 $\widetilde{\phi}_1(sq) = \widetilde{A}(s)\widetilde{\phi}_1(s)$

for a rational function $\tilde{A}(s)$.

[Galois theory]

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

 $\widetilde{\phi}_1(sq) = \widetilde{A}(s)\widetilde{\phi}_1(s)$

for a rational function $\tilde{A}(s)$.

[Galois theory]

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

 $\widetilde{\varphi}_1(sq) = \widetilde{A}(s)\widetilde{\varphi}_1(s)$

for a rational function $\tilde{A}(s)$.

The Galois theory of q-difference equations gives a necessary condition on the function $\tilde{A}(s)$ for $\tilde{\phi}_1(s)$ (and $\phi_1(y)$) to be D-algebraic.

The new functional equation, with $\tilde{\varphi}_1(s) := \varphi_1(Y(s))$ and $q = e^{2i\beta}$:

 $\widetilde{\phi}_1(sq) = \widetilde{A}(s)\widetilde{\phi}_1(s)$

[Galois theory]

for a rational function $\tilde{A}(s)$.

The Galois theory of q-difference equations gives a necessary condition on the function $\tilde{A}(s)$ for $\tilde{\phi}_1(s)$ (and $\phi_1(y)$) to be D-algebraic.

With our function $\widetilde{A}(s)$... this boils down to Condition C. $(C) \quad \alpha \in \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}, \quad \text{or} \quad \{\alpha_1, \alpha_2\} \subset \mathbb{Z} + \frac{\pi}{\beta}\mathbb{Z}$

Below Inspiration: enumeration of discrete lattice walks in the quadrant:
 $(xy - t(x + y + x^2y^2))Q(t;x,y) = xy - txQ(t;x,0) - tyQ(t;0,y).$

Below Inspiration: enumeration of discrete lattice walks in the quadrant:
 $(xy - t(x + y + x^2y^2))Q(t;x,y) = xy - txQ(t;x,0) - tyQ(t;0,y).$

❸ Two new tools for the RBM:

- Tutte's "invariant" theory (in disguise): explicit solutions
- Galois theory of difference equations: necessary conditions for D-algebraicity

Below Inspiration: enumeration of discrete lattice walks in the quadrant:
 $(xy - t(x + y + x^2y^2))Q(t;x,y) = xy - txQ(t;x,0) - tyQ(t;0,y).$

- ❸ Two new tools for the RBM:
 - Tutte's "invariant" theory (in disguise): explicit solutions
 - Galois theory of difference equations: necessary conditions for D-algebraicity
- Study models with different assumptions?

$$\delta - \pi < \beta - \varepsilon < \theta < \delta, \qquad 0 < \theta < \beta < \pi$$

Solution: enumeration of discrete lattice walks in the quadrant:
 $(xy - t(x + y + x^2y^2))Q(t;x,y) = xy - txQ(t;x,0) - tyQ(t;0,y).$

- ❸ Two new tools for the RBM:
 - Tutte's "invariant" theory (in disguise): explicit solutions
 - Galois theory of difference equations: necessary conditions for D-algebraicity
- ❸ Study models with different assumptions?

$$\delta - \pi < \beta - \varepsilon < \theta < \delta, \qquad 0 < \theta < \beta < \pi$$

