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Reflected Brownian motion in a quadrant

Some assumptions:
. semi-martingale  T11 >0, T122>0, detR>0
 Negative drif't w <0, ux<oO

« existence (and uniqueness) of stationary distribution

T2l —Ti2M2 <0, T2 — 7211 <O

[Varadhan & Williams 85, Hobson & Rogers 93]
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» Functional equation for @(x,y) (“basic ad joint relationship”):

—v(%y)e(x,y) =vi(xy)er(y) +v2(x,y)e2(x)

for polynomials y, yi, y2:
vy(x,y) = 3(011x% 4+ 2012xy + 022y%) + wix + pay,

Y1 (X,U) — THX"_TZHJ)
v2(x,y) =T112x + T22V. [Dai & Mizayawa 1]

* The functions @i(y) and @2(x) are ID Laplace transforms, and

H2T11 — K127
T127T21 — 111722

T2191(Yy) = — (u2 + 022 y/2) (0,y) — 722

(same for P2(x)).
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Stationary distribution: “simple” Laplace transform?

Functional Dq;(lxgg ricjic
equation 9 PoI(,0 (X 4))=0
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P(xY)is
algebraic
P(xY) s / /
D-finite
1 Special cases:
The moments Mmn, are de.nsﬂyzsum. of exp.
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with polynomial coeff's. cases
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A hierarchy of functions

» Algebraic
1= (x) +xp(x)* =0

« D-finite
x(T—16x)P" (x) + (1 —32x)P’(x) —dp(x) =0

o D-algebraic
(2x 4 5 (x) — 3xp " (x))h " (x) = 48x

o D-transcendantal

Multi-variate functions: one DE per variable
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A classical parameter: 54 e—1t
X = f)

The process is a semi-martingale iff a<l [Williams],

A refinement (involves O):

2e+0—-p—m 20 —0—m
& B

(exchanged by symmetry). Note that oy + otx = 200 — 1.

and 0%

X1
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Corollary: ¢i(y), ®2(x) and @(x,y) are D-algebraic [closure properties].
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Rational cases: 6 + e =+mP (a € Z) [simple]

Thm. Under this assumption,

P1 (U) — m>

where P(y) is a explicit polynomial.

Equivalently, the corresponding density pi(v) is a sum of terms

Kvie V.

e In particular, it all poles of P(y) are distinct then the corresponding
density is a sum of exponentials [Dieker-Moriarty 091,

« A multiple pole occurs iff 8 =28 +j3 mod 7t for some j € [2,-2a.

Example. If 8 + e+ B =7 (e« =—1) and 0 — 26 = 2 + 7, then
K

a—y)*’

with density proportional to ve™ ™" (Erlang distribution).

@1(9):(
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A D-finite case: 6 + € + B = 21

Thm. Under this assumption,
T7T/B(ay +b) — A

(B—y)(C—y) ’
where all constants are explicit and

To(z) = 2 ((z+ V2 1)+ 2= V2 1)),

©1(y) =

« The function @i(y) is D-finite, and algebraic iff 71/ € Q .

 The linear differential equation satisfied by T(2) yields an explicit

4 order recurrence relation for the moments.



A “double” algebraic case: a;=a2=0

[double]

Thm. This corresponds to

0 =20 —m, B—0=2e—m.

Under this assumption,

K

©1 (U) — m)

with explicit constants. The corresponding density pi(v) is

K e—v/A

YV




A “double” algebraic case: )= a2=0 [double]

Thm. This corresponds to
0 =20 —m, B—0=2e—m.

Under this assumption,
K

q”(y)::’qujig)

with explicit constants. The corresponding density pi(v) is
e—v/A

K

YV

« Explicit 2D density (in the B-wedge): in polar coordinates (r,a),

(rcosarsina)—KCOS(%)eX ¢ 71cos? 0—a
do , — 7 D . |

cf. [Harrison 7181 in a special case (p =6 = /2, ¢ = 3n/4, uy = 0).




ll1l. The proof:

algebraic skeleton

(all analysis hidden)
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The functional equation for @(x,y):

—v(%y)e(x,y) =vi(xy)er(y) +v2(x,y)e2(x),

where the kernel y(x,y) is quadratic:

|

v(x,y) = z(GHXZ +2012%Y + 022Y7) + WX + M2y

and yi(x,y), Y2(x,y) are linear polynomials in x,y.

e Assume Y(x,Y) = Y(x,y")=0. By elimination of @2(x),

v1(x,Y) - vilxy’) ,
yZ(X’y)cm(y) yZ(X,y,)cm(y )
e This reads

¢1(By)) =Aly)e1(y),

for algebraic functions A(y) and B(y).
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A rational parametrisation of the curve y(x,y)=0

The curve :
Y%, y) = 2(011X2 +2012xy + 022y%) + x4 pay =0

can be parametrized by

1 S elh
X(s) = ay + b s+g , Y(s)=a,+by ei—6+ ,

with explicit constants.

o If x=X(s), the two roots of y(x,y) are y=Y(s) and y'=Y(1/s)= Y(sq),
with g= 2B,

« The functional equation

©1(B(y)) =Aly)eily),
becomes

~

©1(sq) = A(s)o1(s),
where A(s) is rational and @1 (s) := @1(Y(s)).
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The new functional equation, with @1 (s) := @1(Y(s)) and g= e%P:

~
~

¢1(sq) = A(s)@1(s). (1)
The rational function A(s):
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Observation: If there exists a rational function R(s) such that
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Condition C = explicit solution (and D-algebraicity)

The new functional equation, with @1 (s) := @1(Y(s)) and g= e%P:

~

©1(sq) = Als)p1(s). (1)

The rational function A(s):

~ - (s—s7)(s2s—1)
A= s 1)

with s; = —e'PU—x1) o, — _ptBx2

Observation: If there exists a rational function R(s) such that

(;‘(S))m - RR(S;)’

This holds iff

(C) O(EZ—F%Z, or {OC1,0(2}CZ—|—%Z

= explicit trigonometric solutions.



D-algebraicity = Condition C [Galois theory]

The new functional equation, with 1 (s) := @1 (Y(s)) and g= e%P:

¢1(sq) = Als)@1(s)

for a rational function A(s).
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The new functional equation, with 1 (s) := @1 (Y(s)) and g= e%P:

~
~

©1(sq) = A(s)1(s)

for a rational function A(s).

The Galois theory of g-difference equations gives a necessary
condition on the function A(s) for @1(s) (and @1(y)) to be D-

algebraic.



D-algebraicity = Condition C [Galois theory]

The new functional equation, with 1 (s) := @1 (Y(s)) and g= e%P:

~
~

©1(sq) = A(s)1(s)

for a rational function A(s).

The Galois theory of g-difference equations gives a necessary
condition on the function A(s) for @1(s) (and @1(y)) to be D-

algebraic.

With our function A(s)... this boils down to Condition C.

(C) ocEZ+%Z, or {oc1,oc2}CZ+%Z



Final comments

® Inspiration: enumeration of discrete lattice walks in the quadrant:
(xy —tlx+y +x°y?)) Qtx,y) = xy — txQ(t;x,0) — tyQ(t; 0, y).
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Final comments

® Inspiration: enumeration of discrete lattice walks in the quadrant:
(xy —tlx+y +x°y?)) Qtx,y) = xy — txQ(t;x,0) — tyQ(t; 0, y).

Thanks for your
attention af :

® Two new tools for the RBM:
- Tutte's “invariant” theory (in disguise): explicit solutions

Galois theory of difference equations: necessary conditions for
D-algebraicity

® Study models with different assumptions?

d—m<P—e<BO <Y, 0<O<P<m




